3.346 \(\int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx\)

Optimal. Leaf size=90 \[ \frac {d \sqrt {a+c x^2}}{(d+e x) \left (a e^2+c d^2\right )}-\frac {a e \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}} \]

[Out]

-a*e*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))/(a*e^2+c*d^2)^(3/2)+d*(c*x^2+a)^(1/2)/(a*e^2+c*
d^2)/(e*x+d)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {807, 725, 206} \[ \frac {d \sqrt {a+c x^2}}{(d+e x) \left (a e^2+c d^2\right )}-\frac {a e \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

(d*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*(d + e*x)) - (a*e*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x
^2])])/(c*d^2 + a*e^2)^(3/2)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rubi steps

\begin {align*} \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx &=\frac {d \sqrt {a+c x^2}}{\left (c d^2+a e^2\right ) (d+e x)}+\frac {(a e) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{c d^2+a e^2}\\ &=\frac {d \sqrt {a+c x^2}}{\left (c d^2+a e^2\right ) (d+e x)}-\frac {(a e) \operatorname {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{c d^2+a e^2}\\ &=\frac {d \sqrt {a+c x^2}}{\left (c d^2+a e^2\right ) (d+e x)}-\frac {a e \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{\left (c d^2+a e^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 90, normalized size = 1.00 \[ \frac {d \sqrt {a+c x^2}}{(d+e x) \left (a e^2+c d^2\right )}-\frac {a e \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

(d*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*(d + e*x)) - (a*e*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x
^2])])/(c*d^2 + a*e^2)^(3/2)

________________________________________________________________________________________

fricas [B]  time = 1.06, size = 382, normalized size = 4.24 \[ \left [\frac {{\left (a e^{2} x + a d e\right )} \sqrt {c d^{2} + a e^{2}} \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, {\left (c d^{3} + a d e^{2}\right )} \sqrt {c x^{2} + a}}{2 \, {\left (c^{2} d^{5} + 2 \, a c d^{3} e^{2} + a^{2} d e^{4} + {\left (c^{2} d^{4} e + 2 \, a c d^{2} e^{3} + a^{2} e^{5}\right )} x\right )}}, -\frac {{\left (a e^{2} x + a d e\right )} \sqrt {-c d^{2} - a e^{2}} \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - {\left (c d^{3} + a d e^{2}\right )} \sqrt {c x^{2} + a}}{c^{2} d^{5} + 2 \, a c d^{3} e^{2} + a^{2} d e^{4} + {\left (c^{2} d^{4} e + 2 \, a c d^{2} e^{3} + a^{2} e^{5}\right )} x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*((a*e^2*x + a*d*e)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2
 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*(c*d^3 + a*d*e^2)*sqrt(
c*x^2 + a))/(c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x), -((a*e^2*x + a*d*
e)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^
2 + a*c*e^2)*x^2)) - (c*d^3 + a*d*e^2)*sqrt(c*x^2 + a))/(c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*
a*c*d^2*e^3 + a^2*e^5)*x)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.01, size = 340, normalized size = 3.78 \[ \frac {c \,d^{2} \ln \left (\frac {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, e^{2}}+\frac {\sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, d}{\left (a \,e^{2}+c \,d^{2}\right ) \left (x +\frac {d}{e}\right ) e}-\frac {\ln \left (\frac {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(e*x+d)^2/(c*x^2+a)^(1/2),x)

[Out]

-1/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((-2*(x+d/e)*c*d/e+2*(a*e^2+c*d^2)/e^2+2*((a*e^2+c*d^2)/e^2)^(1/2)*(-2*(x+d
/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))+d/e/(a*e^2+c*d^2)/(x+d/e)*(-2*(x+d/e)*c*d/e+(x+d/e)^2
*c+(a*e^2+c*d^2)/e^2)^(1/2)+d^2/e^2*c/(a*e^2+c*d^2)/((a*e^2+c*d^2)/e^2)^(1/2)*ln((-2*(x+d/e)*c*d/e+2*(a*e^2+c*
d^2)/e^2+2*((a*e^2+c*d^2)/e^2)^(1/2)*(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))

________________________________________________________________________________________

maxima [A]  time = 0.52, size = 148, normalized size = 1.64 \[ \frac {\sqrt {c x^{2} + a} d}{c d^{2} e x + a e^{3} x + c d^{3} + a d e^{2}} - \frac {c d^{2} \operatorname {arsinh}\left (\frac {c d x}{\sqrt {a c} {\left | e x + d \right |}} - \frac {a e}{\sqrt {a c} {\left | e x + d \right |}}\right )}{{\left (a + \frac {c d^{2}}{e^{2}}\right )}^{\frac {3}{2}} e^{4}} + \frac {\operatorname {arsinh}\left (\frac {c d x}{\sqrt {a c} {\left | e x + d \right |}} - \frac {a e}{\sqrt {a c} {\left | e x + d \right |}}\right )}{\sqrt {a + \frac {c d^{2}}{e^{2}}} e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

sqrt(c*x^2 + a)*d/(c*d^2*e*x + a*e^3*x + c*d^3 + a*d*e^2) - c*d^2*arcsinh(c*d*x/(sqrt(a*c)*abs(e*x + d)) - a*e
/(sqrt(a*c)*abs(e*x + d)))/((a + c*d^2/e^2)^(3/2)*e^4) + arcsinh(c*d*x/(sqrt(a*c)*abs(e*x + d)) - a*e/(sqrt(a*
c)*abs(e*x + d)))/(sqrt(a + c*d^2/e^2)*e^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x}{\sqrt {c\,x^2+a}\,{\left (d+e\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((a + c*x^2)^(1/2)*(d + e*x)^2),x)

[Out]

int(x/((a + c*x^2)^(1/2)*(d + e*x)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {a + c x^{2}} \left (d + e x\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)**2/(c*x**2+a)**(1/2),x)

[Out]

Integral(x/(sqrt(a + c*x**2)*(d + e*x)**2), x)

________________________________________________________________________________________